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1. Introduction

Integrability on both sides of AdS/CFT [1 – 4] has enabled many quantitative checks of the

correspondence (see [5 – 9] for reviews). At weak ’t Hooft coupling, anomalous dimensions of

gauge theory operators can be calculated using the Bethe ansatz of an integrable spin chain.

At strong coupling, string theory becomes tractable in the semiclassical limit where one can

study the energies of the corresponding classical string configurations. Understanding in

detail the interpolation between weak and strong coupling remains an outstanding problem.

Recently Hofman and Maldacena [10] suggested a particular limit where the spectrum

simplifies on both sides of the correspondence. They considered operators with infinite

energy ∆ and U(1) R-charge J but finite ∆− J and fixed ‘worldsheet’ momentum p. The

simplest nontrivial example of such an operator is

Op ∼
∑

l

eipl (· · ·ZZZWZZZ · · ·), (1.1)
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where Z is a scalar field with R-charge J = 1 and W is an excitation inserted at position l

along the chain. Note that this is a formal limit where the operator becomes infinitely long

and we thus ignore taking the trace (and hence we ignore the cyclicity constraint which

would normally set the total momentum to zero).

This limit is different from the BMN limit [11] and has the nice feature that it decouples

quantum effects characterized by the ’t Hooft coupling λ from finite J effects [12, 13, 10].

In this limit the spectrum on both sides can be analyzed in terms of asymptotic states

and the S-matrix describing their scattering. The general state can have any number of

elementary magnons as well as bound states thereof.

Hofman and Maldacena identified the elementary magnon (1.1) with a particular string

configuration moving on an R × S2 subspace of AdS5 × S5, which they called the ‘giant

magnon.’ Classical string theory on R × S2 is equivalent to classical sine-Gordon theory

[14 – 17], and the giant magnon solution of [10] corresponds to the sine-Gordon soliton.

Using this map to sine-Gordon theory, the scattering phase of two magnons was computed

and shown to match the large λ limit of the conjecture of [18].

In [19] a solution describing a giant magnon moving on R× S3 with two angular mo-

menta was constructed, after the existence of such a state had been shown, and a particular

case considered, in [20]. The two-charge giant magnon has infinite J just like (1.1), and in

addition carries some finite amount J2 of angular momentum in an orthogonal plane. This

solution was obtained by exploiting the correspondence between classical string theory on

R × S3 and the complex sine-Gordon model. In contrast to (1.1), it corresponds not to a

single excitation W but to a bound state of many such excitations carrying a finite macro-

scopic amount of J2 charge. More recent work on giant magnons has considered finite J

effects [21], some quantum corrections [22], and giant magnon solutions for β-deformed

AdS5 × S5 [23].

The aim of this paper is to lay the foundation for a study of more general giant magnon

solutions on R× S5. We define a giant magnon to be any open string on R× SN−1 whose

endpoints move at the speed of light along the equator of the sphere. One can build a

physical closed string solution from two or more giant magnons by attaching the beginning

of each giant magnon to the end of another.

Previous studies [10, 19] have employed the correspondence between classical string

theory on R×S2 (or R×S3) and the sine-Gordon (or complex sine-Gordon) model. More

generally, string theory on R×SN−1 is classically equivalent to the so-called SO(N) SSSG

(symmetric space sine-Gordon) model [24, 25]. An advantage of using the sine-Gordon

formulation of the problem is that explicit formulas are known for arbitrary n-soliton

configurations in these theories. The disadvantage of using the sine-Gordon formulation is

that the map between the sine-Gordon variables and the string sigma-model variables Xi

describing the embedding of the string into R×SN−1 is nonlinear and difficult or impossible

to invert in practice for any but the simplest configurations.

In this paper we instead focus directly on the SO(N) vector model describing strings

on R × SN−1 and the SU(2) principal chiral model describing strings on R × S3. Being

integrable, there exists a procedure for directly constructing their soliton solutions. We

employ the dressing method [26 – 28] to construct classical string solutions corresponding
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to various scattering and bound states of magnons, as well as scattering states of bound

states.1

We use the dressing method to rederive the previously known giant magnon solutions

(5.5) and (4.15), which both correspond to single sine-Gordon solitons, and further use it

to construct several new solutions (4.18), (4.26), (5.10), (5.14), and (5.19) corresponding

to scattering or bound states of two solitons carrying one, two or three SO(6) charges.

(Solutions equivalent to (5.10) and (5.14) have also been obtained by J. Maldacena and

A. Mikhailov from the Bäcklund transformation [29].) Moreover, as we discuss below, the

dressing method allows general n-soliton scattering and bound states to be constructed

algebraically.

It is an important open problem to determine an overall λ-dependent phase factor

in the magnon S-matrix [30, 31], whose zeros and poles must contain information about

the spectrum of magnon bound states. We calculate the dispersion relations for all of

the solutions constructed in this paper, but we do not address here the calculation of the

scattering phase. At the semiclassical level, it can be computed by simply translating the

result from the corresponding sine-Gordon picture, as was done in [10] for two magnons on

R× S2. The calculation of quantum corrections to the scattering phase would require the

explicit formulas presented in (4.18), (5.10) or (5.19) below since the correspondence with

the sine-Gordon model breaks down at the quantum level.

We begin in section 2 with a brief statement of our notation and the equations to be

solved. In section 3 we review the dressing method for the principal chiral model, and

explain how to apply it to the SO(N) vector model by a particular embedding. In sections

4 and 5 we apply this method to construct explicit multi-soliton string configurations for

R× S3 and R× SN−1 respectively.

2. Giant magnon preliminaries

We use worldsheet coordinates t (identified with physical time) and x, which ranges from

−∞ to +∞. In conformal gauge, a giant magnon is a solution of the sigma model equations

of motion (we use z = 1
2(x− t), z̄ = 1

2(x+ t))

∂̄∂Xi + (∂Xj ∂̄Xj)Xi = 0, XiXi = 1, (2.1)

subject to the Virasoro constraints

∂Xi∂Xi = ∂̄Xi∂̄Xi = 1. (2.2)

When useful, we will employ the complex coordinates

Z1 = X1 + iX2, Z2 = X3 + iX4, Z3 = X5 + iX6. (2.3)

1The previous sentence highlights a possible terminological confusion in this subject. In this paper we

consider only single giant magnons; that is, single open strings, corresponding to a single operator but with

a possibly arbitrary number of magnon excitations W . The notion of ‘soliton number’ is well-defined in

the integrable SO(N) vector model, so we will characterize giant magnon solutions according to how many

solitons they carry. Each soliton may correspond to one magnon W or to a bound state of many magnons.

– 3 –



J
H
E
P
1
0
(
2
0
0
6
)
0
1
2

The boundary conditions for a giant magnon at fixed t are

Z1(t, x→ ±∞) = eit±ip/2+iα,

Zi(t, x→ ±∞) = 0, i = 2, 3, (2.4)

where α is any real constant and p represents the total worldsheet momentum of the

magnon. Geometrically, p represents the difference in longitude between the two endpoints

of the string on the equator of the S5. The first condition (2.4) only defines p modulo 2π.

Although this is sufficient for giant magnon states corresponding to a single soliton, more

general giant magnons corresponding to scattering or bound states of many solitons can

carry arbitrary p. A better definition is

p =
1

i

∫ +∞

−∞
dx

d

dx
logZ1. (2.5)

In addition to p, giant magnons can be characterized by the conserved charges

∆− J =

√
λ

2π

∫ +∞

−∞
dx
(
1− Im[Z̄1∂tZ1]

)
,

Ji =

√
λ

2π

∫ +∞

−∞
dx Im[Z̄i∂tZi], i = 2, 3, (2.6)

where λ is the ’t Hooft coupling. Note that ∆ and J are separately infinite for a giant

magnon; only their difference is finite.

3. Review of the dressing method

In this section we briefly review the dressing method of Zakharov and Mikhailov [26, 27]

for constructing soliton solutions of classically integrable equations. This is a very general

technique, but we restrict our attention to its application to the principal chiral model,

since all of the solutions given in this paper may be embedded into it as discussed below.

We consider a unitary N ×N matrix field g(z, z̄) subject to the equation of motion

∂̄
(
∂g g−1

)
+ ∂

(
∂̄g g−1

)
= 0. (3.1)

The dressing method allow us to start with some given solution g of this equation and

construct a new solution g′ by

g → g′ = χg (3.2)

for some appropriately chosen χ. If χ were just a constant matrix, this would be an

uninteresting unitary transformation, so to generate physically distinct solutions we want

χ to depend on z and z̄.

3.1 Construction

The dressing method construction proceeds by introducing an auxiliary variable λ (called

the spectral parameter, not to be confused with the ’t Hooft coupling in (2.6)) and consid-

ering the system of equations

i∂̄Ψ =
AΨ

1 + λ
, i∂Ψ =

BΨ

1− λ (3.3)

for three matrices Ψ(λ), A, and B (it is crucial that A and B are independent of λ).
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The relation between (3.3) and (3.1) is as follows. If we have any solution g to (3.1),

then we can take

A = i∂̄g g−1, B = i∂g g−1 (3.4)

and then solve (3.3) to find Ψ(λ) such that

Ψ(0) = g. (3.5)

On the other hand, suppose we have any collection (Ψ(λ), A,B) which satisfies (3.3) for all

λ. Then it is easy to check that Ψ(0) is guaranteed to satisfy (3.1). We impose on Ψ(λ)

the unitarity condition

Ψ†(λ̄)Ψ(λ) = 1. (3.6)

Suppose we consider the analogue of the gauge transformation (3.2) for the auxiliary

system (3.3), now with a λ-dependent gauge parameter χ(λ),

Ψ → Ψ′ = χΨ,

A → A′ = χAχ−1 + i(1 + λ)∂̄χχ−1,

B → B′ = χBχ−1 + i(1− λ)∂χχ−1. (3.7)

If we can arrange for χ(λ) to be chosen in such a way that the new A′ and B′ remain

independent of λ, then (Ψ′(λ), A′, B′) is a legitimate new solution of (3.3), and hence

provides a new solution g′ = Ψ′(0) of the principal chiral model.

The constraint that A′ and B′ should be independent of λ is easy to solve by imposing

constraints on the analytic properties of χ(λ) in the complex λ-plane. Specifically, we

require that χ(λ) should be meromorphic, and that χ(λ)→ 1 as λ→∞. We say that χ(λ)

has a pole at some λ if any entry of the matrix χ(λ) has a pole there.

Let us demonstrate by means of a simple example how these analyticity constraints

may be used to construct the desired χ(λ). In the simplest nontrivial case, χ(λ) has a

single pole at some location λ1. In order to preserve the unitarity condition (3.6), χ(λ)

should satisfy

χ†(λ̄)χ(λ) = 1. (3.8)

Consequently χ−1(λ) must have a single pole at λ̄1. Already this information is enough to

fix the dressing function χ to be of the form

χ(λ) = 1 +
λ1 − λ̄1

λ− λ1
P (3.9)

where P is a hermitian projection operator (i.e., P 2 = P = P †).
It remains to choose P so that A′ and B′ are independent of λ. In fact, since they

become independent of λ as λ → ∞, it is sufficient to check that they have no poles.

Looking at (3.7) we might worry that they develop poles at λ1 (from χ(λ)) or λ̄1 (from

χ−1(λ)). It is however easy to check, using the fact that Ψ(λ) satisfies the differential

equations (3.3), that the residues at these putative poles actually vanish if one chooses

the projection operator P such that its image is spanned by a collection of vectors of
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the form {Ψ(λ̄1)e1,Ψ(λ̄1)e2, . . .} where ei are an arbitrary collection of constant vectors

(independent of z and z̄). In general the projector P can have any rank, but in all of our

applications below P will have rank one, so we write it explicitly as

P =
Ψ(λ̄1)ee†Ψ−1(λ1)

e†Ψ−1(λ1)Ψ(λ̄1)e
(3.10)

for an arbitrary constant vector e. It is clear that the overall scale of e drops out of (3.10),

so in fact e lives in PN−1, which parametrizes the set of lines in CN . More generally, the

data {ei} for a rank k projection operator would be specified by giving an element of the

Grassmannian Gr(k,N) of k-planes in CN .

3.2 Summary for the U(N) principal chiral model

To summarize, the dressing method proceeds as follows. Given any solution g to the original

equation (3.1), we first solve the linear system (3.3) with A and B given by (3.4) to find

Ψ(λ). The dressed solution Ψ′(λ) = χ(λ)Ψ(λ) may be constructed using (3.9) and (3.10).

Finally, g′ = Ψ′(0) provides a new solution of (3.1).

It is clear that successive applications of this simple procedure, i.e. Ψ′′(λ) = χ′(λ)Ψ′(λ)

etc., can be used to generate multi-soliton solutions. We will illustrate this construction

below via several examples.

3.3 Reduction to the SO(N) vector model

Although the principal chiral model enjoys the most straightforward application of the

dressing method, the equations (2.1) describing conformal gauge strings on R× SN−1 are

those of the SO(N) vector model. Imposing the Virasoro constraints (2.2) gives the so-

called reduced [14] vector model. We can employ the dressing method for this model by

embedding it into the principal chiral model.

We choose the embedding following [32, 28, 33] (a different choice is shown in [34]).

Define the diagonal N ×N matrix

θ = diag(+1,−1, . . . ,−1). (3.11)

Then we choose the embedding of the vector Xi into an SO(N) principal chiral field ac-

cording to the formula

{Xi : XiXi = 1} ↔ g = θ(2XXT − 1) ∈ SO(N). (3.12)

Note that g satisfies the identity

gθgθ = 1. (3.13)

Geometrically, this identity specifies a particular coset SN−1 = SO(N)/SO(N − 1) sitting

inside SO(N). The dressing method proceeds as in the previous subsection, except that

we should add to (3.6) the additional conditions [28]

Ψ(λ̄) = Ψ(λ), Ψ(λ) = Ψ(0)θΨ(1/λ)θ. (3.14)
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In order to preserve (3.14) under dressing, the dressing factor χ(λ) must satisfy

χ(λ̄) = χ(λ), χ(λ) = χ(0)Ψ(0)θχ(1/λ)Ψ(0)θ. (3.15)

It is not possible for these constraints to be satisfied if χ(λ) has a single pole.

Instead, there are two distinct classes of ‘minimal’ solitons: the simplest has two poles

class I : λ1, λ̄1 = 1/λ1 (3.16)

located at conjugate points on the unit circle, while the second has four poles located at

an arbitrary point λ1 in the complex plane and its three images under conjugation and

inversion,

class II : λ1, λ̄1, 1/λ1, 1/λ̄1. (3.17)

Below we will consider examples of both classes of solitons. We will also consider the case

of two class I solitons, with two pairs of conjugate poles on the unit circle, being distinct

from a single class II soliton.

For class I the dressing factor is [32, 28]

χ(λ) = 1 +
λ1 − λ̄1

λ− λ1
P +

λ̄1 − λ1

λ− λ̄1
P (3.18)

with the projector P given by the same formula (3.10). The constraints (3.15) imply that

the constant vector e ∈ CN must satisfy

eTe = 0, ē = θe. (3.19)

The construction of the dressing factor for class II solitons is somewhat more compli-

cated. The reader can find all of the details in Theorem 4.2 and section 5 of [28]. In the

example we look at below we will see that the class II soliton with four poles (3.17) in the

complex plane can be obtained from an analytic continuation of two pairs of poles on the

unit circle describing two class I solitons (3.16).

4. Giant magnons on R× S3 from the U(2) principal chiral model

String theory on R × S3 admits a particularly simple application of the dressing method

since the string equations of motion, in conformal gauge, are equivalent to those of the

SU(2) principal chiral model, via the embedding

{(Z1, Z2) : |Z1|2 + |Z2|2 = 1} ↔ g =

(
Z1 −iZ2

−iZ̄2 Z̄1

)
∈ SU(2). (4.1)

One minor subtlety which arises for SU groups is that the dressing factor (3.9) does

not have unit determinant. Rather,

detχ(λ) =
λ− λ̄1

λ− λ1
. (4.2)

We can ensure that a dressed solution χ(0)Ψ(0) still sits in SU(2) (rather than U(2))

by throwing in a compensating phase factor (λ̄1/λ1)−1/2.
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4.1 The vacuum

We begin with the vacuum solution

Z1 = eit,

Z2 = 0 (4.3)

which describes a point-like string moving at the speed of light around the equator of the

S3. This state clearly has ∆− J = 0. Using the embedding (4.1) and (3.4) we find

g0 =

(
e−i(z−z̄) 0

0 e+i(z−z̄)

)
, A0 = −B0 =

(−1 0

0 1

)
. (4.4)

The corresponding vacuum solution Ψ0(λ) to the auxiliary problem (3.3) satisfying (3.5)

is easily found to be

Ψ0(λ) =

(
e+iZ(λ) 0

0 e−iZ(λ)

)
, Z(λ) =

z

λ− 1
+

z̄

λ+ 1
. (4.5)

4.2 A single two-charge soliton

Let us now dress the vacuum (4.5) to generate a one-soliton solution. We will show each

step in great detail in order to demonstrate the procedure clearly. We use the dressing

factor (3.9) with P given by (3.10). We can choose e to be an arbitrary constant element

of P1, which, without loss of generality, we can parametrize as

e = (w, 1/w) (4.6)

for w ∈ C∗. Notice that e only enters into (3.10) in the form

Ψ0(λ̄1)e = (w e+iZ(λ̄1) 1
w e
−iZ(λ̄1) ) . (4.7)

It is clear now that the complex parameter w can be completely absorbed by shifting

Z(λ̄1) → Z(λ̄1) + i logw. From (4.5) it is evident that such a shift amounts to some

particular translation in the x and t coordinates. Since this does not substantively affect

the resulting solution, we can without loss of generality go ahead and set w = 1 for

simplicity.

The projector P can then be written as

P =
1

1 + e2i(Z(λ1)−Z(λ̄1))

(
1 e+2iZ(λ1)

e−2iZ(λ̄1) e2i(Z(λ1)−Z(λ̄1))

)
. (4.8)

The one-soliton solution is then

Ψ1(λ) =

[
1 +

λ1 − λ̄1

λ− λ1
P

]
Ψ0(λ). (4.9)

We can read off the corresponding solution in the Zi variables from the embedding (4.1),

which leads to (keeping in mind the phase discussed under (4.2))

Z1 =
e+it

|λ1|
λ1e
−2iZ(λ̄1) + λ̄1e

−2iZ(λ1)

e−2iZ(λ1) + e−2iZ(λ̄1)
,

Z2 =
e−it

|λ1|
i(λ̄1 − λ1)

e−2iZ(λ1) + e−2iZ(λ̄1)
. (4.10)
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One can check directly that this solves the string equations of motion (2.1), the Virasoro

constraints (2.2), and satisfies the giant magnon boundary conditions (2.4).

It is instructive to express this solution in a more familiar form. First we parametrize

λ1 = reip/2 (4.11)

and we introduce

u = i(Z(λ1)− Z(λ̄1)),

v = Z(λ1) + Z(λ̄1)− t, (4.12)

Plugging (4.11) into (4.12) and using (4.5), we find that u and v may be expressed as

u = [x cosh θ − t sinh θ] cosα,

v = [t cosh θ − x sinh θ] sinα, (4.13)

where α and θ are given by

cotα =
2r

1− r2
sin

p

2
,

tanh θ =
2r

1 + r2
cos

p

2
. (4.14)

Finally, we find that the solution (4.10) may be written as

Z1 = eit
[
cos p2 + i sin p

2 tanhu
]
,

Z2 = eiv
sin p

2

cosh u
. (4.15)

This form of the solution agrees precisely with the two-charge giant magnon solution in [19],

where it was shown to correspond to the single-soliton solution of the complex sine-Gordon

theory. As a soliton of the U(2) principal chiral model, this solution has been obtained

in [26]. We also note that it reduces in the limit r → 1 to the elementary giant magnon of

Hofman and Maldacena [10].

If we force p to lie within the range −2π < p < +2π, then we see that the total

momentum (2.5) is equal to |p| for −π < p < π and |p|−2π for π < |p| < 2π. In particular,

λ1 in the right half-plane gives a soliton and λ1 in the left half-plane gives an anti-soliton.

The charges carried by this soliton may be obtained from (2.6),

∆− J =

√
λ

π

1 + r2

2r

∣∣∣sin p
2

∣∣∣ ,

J2 =

√
λ

π

1− r2

2r

∣∣∣sin p
2

∣∣∣ . (4.16)

Eliminating r between these two expressions gives the dispersion relation [20, 19]

∆− J =

√
J2

2 +
λ

π2
sin2 p

2
. (4.17)
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4.3 A scattering state of two two-charge solitons

Now that we have all of the machinery set up, it is straightforward to obtain the solution

corresponding to two two-charge solitons. We simply start with Ψ1(λ) given by (4.9) and

apply the dressing method a second time, now with a pole at λ = λ2. In this manner we

obtain

Z1 =
eit

2|λ1λ2|
R+ |λ1|2λ11̄λ22̄e

+i(v1−v2) + |λ2|2λ11̄λ22̄e
−i(v1−v2)

λ12λ1̄2̄ cosh(u1 + u2) + λ12̄λ1̄2 cosh(u1 − u2) + λ11̄λ22̄ cos(v1 − v2)
,

Z2 =
−i

2|λ1λ2|
λ11̄e

iv1
[
λ12λ1̄2λ̄2e

+u2 + λ1̄2̄λ12̄λ2e
−u2
]

+ (1↔ 2)

λ12λ1̄2̄ cosh(u1 + u2) + λ12̄λ1̄2 cosh(u1 − u2) + λ11̄λ22̄ cos(v1 − v2)
, (4.18)

where

R = λ12λ1̄2̄

[
λ1λ2e

+u1+u2 + λ̄1λ̄2e
−u1−u2

]
+ λ1̄2λ12̄

[
λ1λ̄2e

+u1−u2 + λ̄1λ2e
−u1+u2

]
, (4.19)

ui and vi are given by (4.12) with λ1 → λi, and we use the shorthand notation

λ12 = λ1 − λ2, λ12̄ = λ1 − λ̄2, etc. (4.20)

Parametrizing λi = rie
ipi/2, the conserved charges of (4.18) are given by

∆− J =

√
λ

π

1 + r2
1

2r1

∣∣∣sin p1

2

∣∣∣+

√
λ

π

1 + r2
2

2r2

∣∣∣sin p2

2

∣∣∣ ,

J2 =

√
λ

π

1− r2
1

2r1

∣∣∣sin p1

2

∣∣∣+

√
λ

π

1− r2
2

2r2

∣∣∣sin p2

2

∣∣∣ . (4.21)

It is evident that (4.18) represents a scattering state composed of two solitons of the type

given in (4.10) and discussed in [20, 19].

It is interesting to note that (4.18) admits a simple two (real) parameter generaliza-

tion. Recall that the construction of the projector P in the dressing method requires the

choice (4.6) of a vector e which we parametrized as e = (w, 1/w) for some non-zero complex

number w ≡ w1. Previously, when we had only a single soliton, we argued that w1 could

be set to 1 without loss of generality by a suitable translation of x and t. When applying

the dressing method a second time to obtain the two-soliton solution, we again have the

freedom to choose a different arbitrary vector e2 = (w2, 1/w2), and there is no need for w1

and w2 to be related.

It is still true that we can absorb wi into ui and vi through (4.12) for i = 1, 2 separately.

The effect of this freedom is that (4.18) can be generalized by taking

ui → ui + ai, vi → vi + bi, i = 1, 2 (4.22)

for four arbitrary real numbers ai, bi. Two of these parameters can be absorbed by a

suitable translation of x and t, but the remaining two parameters modify the shape of the

classical solution (4.18) nontrivially and therefore correspond to ‘moduli’ of the scattering

state.
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The solution (4.18) can also be mapped to a two-soliton solution of the complex sine-

Gordon theory by taking the angular field φ of CSG to be [20]

cosφ = ∂̄Xi∂Xi. (4.23)

It would be interesting to see whether (4.18) could also be obtained by exploiting the

permutativity of the Bäcklund transformation along the lines of [16]. Finally, it would be

interesting to calculate the scattering phase for (4.18) (in the string theory picture), along

the lines of [10].

We have demonstrated how to apply the dressing method to the problem of construct-

ing superpositions of two-charge solitons. It is clear that this method can be used to

generate n-soliton scattering solutions for any n, although the expressions are probably

too cumbersome to be of great use. The generalizations of (4.21) and (4.22) to arbitrary n

are obvious.

4.4 A bound state of two two-charge solitons

It is also interesting to construct a bound state of two of these two-charge solitons, along

the same lines as the bound state of one-charge solitons considered in [10]. We begin by

noting that in the solution (4.18), λ and λ̄ are completely free parameters. The expressions

given there, together with the corresponding Z̄j, which are obtained by taking i→ −i and

exchanging λj ↔ λ̄j, satisfy the equations of motion (2.1) for arbitrary complex values of

λj and λ̄j . In order for (4.18) to be a legitimate solution of the S3 sigma-model, however,

we need to impose that the sigma-model fields Xi (2.3) are real. This can be achieved by

imposing, as we usually do, that λ̄j is the complex conjugate of λj . However this reality

condition is also satisfied by taking λ1 to be the complex conjugate of λ̄2 (and vice versa),

a possibility that we now put to use.

For the bound state corresponding to a breather we are interested in analytically

continuing pi to complex momenta

p1 = p+ iq, p2 = p− iq. (4.24)

Using λi = re+ipi/2 and λ̄i = re−ipi/2 we find

λ1 = re−q/2e+ip/2, λ̄1 = re+q/2e−ip/2,

λ2 = re+q/2e+ip/2, λ̄2 = re−q/2e−ip/2, (4.25)

where we have already set r1 = r2 = r to preserve the reality condition. We then find the

‘breather’ solution

Z1 = eit
[
1 +

cos p2 sinh q
2 sinh(u1 + u2) + iN

D

]
,

Z2 =
1

D

[
sin(p2 − i

q
2 )eiv2 coshu1 − sin(p2 + i q2 )eiv1 coshu2

]
, (4.26)

where

N = sin
p

2

[
2 sinh

q

2
coshu1 coshu2 − cosh

q

2
sinh(u1 − u2)

]
, (4.27)

D =
sinh q

2

2i sin p
2

[cos(v1 − v2) + cosh(u1 + u2)] +
sin p

2

2i sinh q
2

[cos(v1 − v2)− cosh(u1 − u2)] .
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Here ui and vi, which are now complex and satisfy ū1 = u2, v̄1 = v2, are given in terms

of (4.25) by (4.12) as usual. By taking p → p ± iq in (4.14), one can still choose to

parametrize ui and vi in terms of the variables αi and θi, at the expense of allowing them

to become complex.

This solution has charges

∆− J =

√
λ

π

1 + r2

2r
2 cosh

q

2

∣∣∣sin p
2

∣∣∣ ,

J2 =

√
λ

π

1− r2

2r
2 cosh

q

2

∣∣∣sin p
2

∣∣∣ . (4.28)

Eliminating the parameter r gives

∆− J =

√
J2

2 +
λ

π2
4 cosh2 q

2
sin2 p

2
. (4.29)

Recall that the two-soliton scattering state is characterized by two continuous real

parameters (4.22) which do not appear in the momentum p or the charges ∆ − J , J2. It

would be strange to find a continuous family of bound states with the same charges, and

indeed we find that the reality condition on the sigma model coordinates also reduces the

freedom (4.22) to a common translation ui → ui + a, vi → vi + b, which can be absorbed

into a translation of x and t. Therefore there is a single bound state for any given p,

∆−J and J2. This fact has a geometric interpretation: the freedom (4.22) for each soliton

corresponds to the ability to choose different initial vectors (4.6) in P1. Thus each soliton

in a multi-soliton scattering state can be ‘oriented’ differently inside SU(2). In order to

bind together to form (4.26), their orientations inside SU(2) must align.

5. Giant magnons on R× SN−1 from the SO(N) vector model

In this section we apply the dressing method for the SO(N) vector model to giant magnon

solutions on R× SN−1. Some of the solutions in this section may be obtained as limiting

cases of the R × S3 solutions obtained in the previous section, but the method described

here is clearly more general since it can be applied to R× SN−1 for N > 4.

5.1 The vacuum

As before (4.3), we start with the solution describing a point-like string moving at the

speed of light along the equator of the sphere,

Xi = (cos t, sin t, 0). (5.1)

For the moment we work with SO(3), describing strings on R×S2. The extension to SO(N)

is of course straightforward and will be employed below.

We embed (5.1) into the SO(3) principal chiral model using (3.12), and find the cor-

responding vacuum solution Ψ0(λ) to the linear system (3.3) is

Ψ0(λ) =




cos 2Z(λ) sin 2Z(λ) 0

− sin 2Z(λ) cos 2Z(λ) 0

0 0 1


 , (5.2)

– 12 –



J
H
E
P
1
0
(
2
0
0
6
)
0
1
2

where Z(λ) is given as before by (4.5). This form of Ψ0(λ) has been chosen to satisfy the

conditions (3.6), (3.15).

5.2 The HM giant magnon from a pair of poles on the unit circle

The simplest soliton is obtained from the dressing factor (3.18) and has two poles at

conjugate points on the unit circle,

λ1 = e+ip/2, λ̄1 = e−ip/2. (5.3)

The projector P is given by (3.10), where we choose to parametrize the initial vector e as

e = (1, i sinw, i cosw), (5.4)

where w is a real parameter. Up to an overall (real) scale factor, which drops out of (3.10)

anyway, this is the most general choice satisfying the constraints (3.19). It turns out that

w is an essentially irrelevant parameter and may be absorbed into a translation of x or t

(although the analysis which leads to this conclusion is not quite as simple here as it was

in the case considered under (4.7)). We can therefore set w = 0.

We use (5.4) and (5.2) to construct the projector P shown in (3.10) and the dressing

factor χ(λ) given in (3.18). Then g = χ(0)Ψ0(0) is a solution of the SO(3) principal chiral

model which lives on the submanifold (3.13), so that we can use (3.12) to read off the new

solution X in the S2 sigma-model coordinates. We find

X1 + iX2 = eit
[
cos p2 + i sin p

2 tanhu
]
,

X3 = sin p
2 sech u (5.5)

with u given by

u =
[
x− t cos

p

2

]
csc

p

2
. (5.6)

The dispersion relation is [10]

∆− J =

√
λ

π

∣∣∣sin p
2

∣∣∣ . (5.7)

This is precisely the elementary giant magnon solution of string theory on R×S 2 found by

Hofman and Maldacena [10], and the formula (5.7) agrees with the strong coupling limit

of the exact magnon dispersion relation [30, 35, 36]

∆− J =

√
1 +

λ

π2
sin2 p

2
. (5.8)

The solution (5.5) also appears in [32] as a solution of the O(3) principal chiral model,

and corresponds via the map between strings on R × S2 and the sine-Gordon model to

a single sine-Gordon soliton. Of course this solution may also be obtained by taking the

r → 1 limit of (4.10), in which the single pole moves onto the unit circle and the charge J2

goes to zero.

As mentioned above, one can check that the parameter w which we set to zero in (5.4)

can be absorbed into a translation of u, which in turn can be absorbed into a translation

of x or t. The generalization of this elementary soliton from R × S2 to R × SN−1 is
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straightforward. We parametrize (5.4) by

e = (1, i sinw, i~v cosw) (5.9)

where ~v is an arbitrary N − 2 component unit vector. As usual, the parameter w can

without loss of generality be set to zero by an appropriate translation in u. The unit

vector ~v then specifies the orientation of the HM soliton in the N − 2 directions (X3, . . .).

5.3 A scattering state of two HM giant magnons from two pairs of poles on the

unit circle

We can further dress the solution of the previous subsection by adding a second pair of

poles on the unit circle at λ2 = e+ip2/2 and λ̄2 = e−ip2/2. This leads to the solution [29]

X1 + iX2 = eit +
eit(R+ iI)

sin p1

2 sin p2

2 (1 + sinhu1 sinhu2)− (1− cos p1

2 cos p2

2 ) cosh u1 cosh u2
,

X3 =
(cos p1

2 − cos p2

2 )(sin p1

2 coshu2 − sin p2

2 cosh u1)

sin p1

2 sin p2

2 (1 + sinhu1 sinhu2)− (1− cos p1

2 cos p2

2 ) cosh u1 cosh u2
, (5.10)

with ui as in (5.6), and

R = (cos p1

2 − cos p2

2 )2 coshu1 coshu2,

I = (cos p1

2 − cos p2

2 )(sin p1

2 sinhu1 cosh u2 − sin p2

2 coshu1 sinhu2) (5.11)

This is the explicit formula for the two-soliton scattering state whose scattering phase was

calculated in [10] (although the precise form was not needed there because the phase shift

can easily be related to that of two solitons in the sine-Gordon model). Again (5.10) may

be obtained by taking r1, r2 → 1 in (4.18). As expected, the energy of (5.10) is

∆− J =

√
λ

π

∣∣∣sin p1

2

∣∣∣+

√
λ

π

∣∣∣sin p2

2

∣∣∣ . (5.12)

Continued application of the dressing method may be used to construct a scattering

state with arbitrarily many solitons. Each soliton can carry a different orientation in the

N − 2 transverse directions by an appropriate choice of the initial vector (5.9), and there

is always the freedom to take ui → ui + ai for arbitrary real constants ai.

5.4 A bound state of two HM solitons from four poles in the complex plane

We can also take four poles, at an arbitrary point λ1 in the complex plane and its three

images (3.17), which we parametrize as

λ1 = e+i(p+iq)/2, λ̄1 = e−i(p−iq)/2, 1/λ1 = e−i(p+iq)/2, 1/λ̄1 = e+i(p−iq)/2.
(5.13)

Following Theorem 4.2 and section 5 of [28] gives the solution [29]

X1 + iX2 = eit
sinh2 q

2 cosh2(u+ ip2 ) + sin2 p
2 sin2(v + i q2)

sinh2 q
2 cosh2 u+ sin2 p

2 sin2 v

X3 =
sin p sinh2 q

2 cosh u cos v − sin2 p
2 sinh q sinhu sin v

sinh2 q
2 cosh2 u+ sin2 p

2 sin2 v
(5.14)

– 14 –



J
H
E
P
1
0
(
2
0
0
6
)
0
1
2

where

u =
2 sin p

2

cosh q − cos p

[
x cosh

q

2
− t cos

p

2

]
,

v =
2 sinh q

2

cosh q − cos p

[
t cosh

q

2
− x cos

p

2

]
. (5.15)

with dispersion relation

∆− J =

√
λ

π

∣∣∣sin p
2

∣∣∣ 2 cosh
q

2
. (5.16)

As evident from this dispersion relation and the fact that (5.14) is periodic in v (for fixed

u), this solution represents a bound state of two HM solitons. This state was also discussed

in [10] (though the full solution (5.14) was not presented).

We can also obtain the solution (5.14) by analytically continuing (5.10) as follows. We

take

p1 = p+ iq, p2 = p− iq (5.17)

from which it follows that (5.15) and (5.6) are related by

u =
1

2
(u1 + u2), v =

1

2i
(u1 − u2). (5.18)

Making these substitutions in (5.10) gives (5.14).

5.5 A three-charge giant magnon

The previous few subsections have demonstrated the utility of the dressing method, applied

to the SO(N) vector model, for constructing giant magnons on R × SN−1. Many of the

simplest examples can be embedded inside R×S3 and may therefore be obtained as limits

of the U(2) principal chiral solutions we considered in the previous section.

Although the dressing method for the U(2) principal chiral model is simpler, the ad-

vantage of the SO(N) vector model is its wider applicability to R× SN−1 for N > 4. We

leave a thorough analysis of the general case to future work, and end here with a partic-

ularly simple example of a three-spin giant magnon on R × S5. The solution is given in

complex coordinates by

Z1 = eit
cosα1 tanhu1 tanhu2 − cosα2

cosα1 − cosα2 tanhu1 tanhu2
,

Z2 = eiv1

√
cos2 α1 − cos2 α2

cosα1 coshu1 − cosα2 sinhu1 tanhu2
,

Z3 = eiv2

√
cos2 α1 − cos2 α2

cosα1 coshu2 coth u1 − cosα2 sinhu2
, (5.19)

where

u1 = x cosα1, v1 = t sinα1,

u2 = x cosα2, v2 = t sinα2. (5.20)
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This solution is valid for sin2 α1 < sin2 α2, which we can assume without loss of generality.

As we have encountered before, the solution (5.19) has a four real parameter generalization

given by (4.22). As usual, two of those parameters can be absorbed into shifts of x and t.

In the particular case of (5.19), a third parameter can be absorbed into a rotation of Z2

or Z3 by a constant phase factor. The net result of this analysis is that (5.19) has a single

physical modulus which adjusts the shape of the solution. This modulus may be taken to

be u2 → u2 + constant.

The solution (5.19) carries charges

J2 =

√
λ

π

sinα1

| cosα1|
, J3 =

√
λ

π

sinα2

| cosα2|
(5.21)

and has energy

∆− J =

√
λ

π

(
1

| cosα1|
+

1

| cosα2|

)
. (5.22)

Eliminating α1 and α2 gives the dispersion relation

∆− J =

√
J2

2 +
λ

π2
+

√
J2

3 +
λ

π2
. (5.23)

It is evident that this solution represents a scattering state consisting of two superimposed

two-charge solitons (4.10), one with momentum p = π and the other with momentum

p = −π. Since the total momentum is zero, this solution is compatible with the form of the

spinning string ansatz made in [37] and can be obtained directly by solving the equations

of motion of the Neumann integrable system.
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[32] Y. Saint Aubin, Bäcklund transformations and soliton type solutions for sigma models with

values in real grassmannian spaces, Lett. Math. Phys. 6 (1982) 441.

[33] H. Eichenherr and M. Forger, More about nonlinear sigma models on symmetric spaces, Nucl.

Phys. B 164 (1980) 528.

[34] A.T. Ogielski, M.K. Prasad, A. Sinha and L.-L.C. Wang, Backlund transformations and local

conservation laws for principal chiral fields, Phys. Lett. B 91 (1980) 387.

[35] A. Santambrogio and D. Zanon, Exact anomalous dimensions of N = 4 Yang-Mills operators

with large R charge, Phys. Lett. B 545 (2002) 425 [hep-th/0206079].

[36] D. Berenstein, D.H. Correa and S.E. Vazquez, All loop BMN state energies from matrices,

JHEP 02 (2006) 048 [hep-th/0509015].

[37] G. Arutyunov, S. Frolov, J. Russo and A.A. Tseytlin, Spinning strings in AdS5 × S5 and

integrable systems, Nucl. Phys. B 671 (2003) 3 [hep-th/0307191].

– 18 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=SPHJA%2C47%2C1017
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C74%2C21
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C92%2C329
http://arxiv.org/abs/hep-th/0511082
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD73%2C086006
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD73%2C086006
http://arxiv.org/abs/hep-th/0603038
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=LMPHD%2CA6%2C441
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB164%2C528
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB164%2C528
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB91%2C387
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB545%2C425
http://arxiv.org/abs/hep-th/0206079
http://jhep.sissa.it/stdsearch?paper=02%282006%29048
http://arxiv.org/abs/hep-th/0509015
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB671%2C3
http://arxiv.org/abs/hep-th/0307191

